
A Novel Approach to Aggregation Processing in Natural Language
Interfaces to Databases

Abhijeet Gupta and Rajeev Sangal
Language Technologies Research Centre

International Institute of Information Technology - Hyderabad, India
abhijeet.gupta@research.iiit.ac.in and sangal@iiit.ac.in

Abstract

In aggregations, a function is applied to a set
of values or entities in a database to yield
a single value. Databases use a limited set
of inbuilt functions to perform aggregations,
hence, restricting NLIDB systems in process-
ing domain based complex aggregations. In
this paper, we introduce an aggregation pro-
cessing framework, which can handle differ-
ent types of aggregation operations in a natural
language query, including direct quantitative
as well as indirect qualitative aggregations,
and those which combine quantifiers or rela-
tional operators with aggregations. Equally
importantly, this is done as a separate layer
independent of the processing capability in
SQL, database query language. The frame-
work has two distinct stages of processing.
In the first stage, aggregations are performed
on a data stream, and in the second stage the
data stream can be further filtered, if required,
on the result obtained in the first stage. With
our approach, we have achieved an accuracy
of 98.1% in processing aggregations and dealt
with certain issues arising due to aggregations
in SQL queries.

1 Introduction

A Natural Language Interface to Databases
(NLIDB) system is an NLP application which
accepts a query in natural language (NL) from
the user and generates a SQL query from it. The
SQL query retrieves the result from a database
as a stream of elements and sends it back to the
user. The database is a RDBMS which is a tabular

representation of a domain’s entities and their rela-
tions. These entities and relations have properties
which are represented in the form of columns of the
tables. These properties can represent quantitative
or qualitative aspects of an entity. The data is stored
in the form of rows in the tables. In the work
done by Gupta et al. (2012), a dependency based
syntactic parse of the NL query is generated to
identify the lexical relations of the elements of the
query. Thereafter, using the Computational Paninian
Grammar (CPG) framework a semantic dependency
parse is generated to identify the domain elements
and their relations. This semantic parse helps in
generating the SQL query of the given NL query. In
this paper, we extend their work further by adding
aggregate processing to the NLIDB system.

The need for aggregate processing arises because
in a NL query the user may request for data which is
derived by extracting and processing over a group of
values. In such a scenario, the result (which is a sin-
gle value output) is the outcome of computation over
a group of values on certain criteria defined through
a function.

For example: (1) ‘List the average marks in the
English course’. In this example, computing the re-
sult requires the retrieval of the set of marks awarded
in the English course and then computing the aver-
age over the retrieved set.

This process of computation over a group of val-
ues by a function to produce a single value of more
significant meaning or measurement is called aggre-
gation. The type of aggregation is specified by lexi-
cal terms in a natural language. The terms frequently
occur as modifiers with nouns, like ‘average’ in sen-



tence (1). The modifier is called an aggregate. In an
utterance, aggregation may be specified on values
directly, as in ‘marks’ in sentence (1), or on entities
indirectly (e.g.‘average students’). In indirect aggre-
gate application, the aggregation is to be done on an
attribute of the implied object.

The functions which are implied by aggregates
are called aggregate functions. Conventionally, ag-
gregations in NLIDB are handled by inserting the
name of the aggregate functions in the SQL query
directly or through predefined templates. The SQL
query thus generated has the relevant aggregation
applied on the database element on which computa-
tion will be performed. In this approach, the aggre-
gate function to be applied, its triggering criteria and
other conditions are pre-determined and integrated
into the SQL query (Figure 1). Therefore, the re-
sult fetched from the RDMBS has the aggregations
as well as other SQL conditions already computed
before the answer is sent to the user.

Figure 1: Conventional Aggregate Processing

This approach however suffers from the following
drawbacks:

(a) Current RDBMS allow a limited number of
inbuilt aggregate functions to be processed through
the SQL query (MySql, 2013; Oracle, 2010) .
Hence, the NLIDB system can process only those
aggregates for which corresponding inbuilt aggre-
gate functions exist in the RDBMS. This limitation
reduces the ability of the system to process addi-
tional domain based aggregations, complex aggre-
gations or quantifiers.

(b) Aggregates can also be qualitative in nature
(e.g.‘good students’). Qualitative aggregates repre-
sent a quality of an element which can be either ex-
plicitly present in the RDBMS as an attribute or oth-
erwise implicitly derivable from one of its attributes.
These aggregates are more complex than quantita-
tive aggregates which can be resolved by a direct
mapping to a corresponding aggregate function. Re-
solving qualitative aggregates, on the other hand,
requires the identification of appropriate attributes

and the criteria which help in deriving that quality
from the attribute. Since the current techniques are
limited to direct mapping of aggregates to RDBMS
aggregate functions (Elmasri and Navathe, 2010),
hence, qualitative aggregations are not processed.

(c) Aggregates may also appear in combination
with quantifiers (e.g.‘most average students’) or re-
lational operators (e.g.‘greater than average marks’).
In such occurrences, the aggregate is computed first
and the quantifier or relational operator is applied on
the results of the aggregation. Hence, a multi-level
pass is required over the SQL data stream. In our
approach, such cases can be handled.

(d) Processing of aggregates in current RDBMS
requires the generation of nested SQL queries or
complex joins. A nested query can be present in the
SELECT clause, FROM clause or WHERE clause
of the root SQL query, depending on the grouping
of elements required in the SQL data stream and
the computation sequence (Hellerstein, 1997). Be-
cause of the variations in the occurrence and thereby
the generation techniques of a SQL query with nest-
ing or joins, it is difficult (Li et al., 2006) and
costly (Chaudhuri, 1998) to design specific pre-
defined mechanisms which will encompass all of
these variations.

The main contribution of our work is the com-
putation of aggregates occurring in the NL query
through an Aggregate Processing Layer (APL), in-
dependent of the RDBMS, applied to the result data
stream before it is sent to the user (Figure 2). The
APL gives us the ability to define and process a
greater number of domain based as well as user-
defined aggregations, a task easily achievable by
people without the technical expertise of RDBMS,
programming, domain schema or natural language
translation. Most importantly, this approach gives
us the ability to process qualitative aggregates in the
NL query since the APL allows for a multi-pass pro-
cessing which is essential for such operations.

The structure of the paper is as follows. In Sec-
tion 2, we discuss issues in aggregation and their so-
lutions through our approach. We also discuss ag-
gregation, its constituents and aggregation types in
detail. In Section 3, we describe our methodology of
processing aggregates. In Section 4, we review the
results of our approach and discuss specific aggre-
gation aspects successfully resolved through it. Sec-



Figure 2: An RDBMS independent Aggregation Process-
ing Layer (APL)

tion 5, concludes our study and mentions the possi-
ble future work based on the results and discussion
in Section 4.

2 Our Approach

A related earlier work (Gupta et al., 2012) success-
fully deals with generating SQL query from a given
NL query without aggregations. The semantic infor-
mation (elements in the domain and their relations)
are identified and maintained in a CPG based depen-
dency structure, which is called the Domain Seman-
tic Tree (DST). The domain elements of the DST
are mapped to an ER-schema graph along with the
attribute-value pair constraints. The SQL query is
generated from the shortest path identified using the
Minimal Spanning Tree algorithm.

In our approach, if the NL query contains an ag-
gregate, it is marked for further processing in the
DST. However, the SQL query generation module
builds the SQL query without any aggregate func-
tions implied on the domain elements. In other
words, the aggregates are identified and marked but
not processed initially by the NLIDB system. There-
fore, the query generation process (as mentioned
above) remains the same with or without aggregates.

We introduce aggregate processing as a layer be-
tween the NLIDB system and the database. We first
generate the SQL data stream without the implied
aggregations by the NL query and send it to the
APL. The APL contains the aggregate processing
modules which perform the necessary computations
and filtering on the data stream elements. The data
stream elements that pass through the APL consti-
tute the final result which is then sent to the user. By
using this approach, we completely avoid the need
of creating pre-defined nesting templates and proce-
dural SQL modules.

This layer has two distinct stages of processing.
The first stage performs the aggregation on the data
stream through aggregate functions. For efficient
processing of data in the APL we have formulated
our own aggregate functions that correspond to the
aggregate. The second stage, if required, further re-
fines the data stream by filtering it on the basis of
additional domain based criteria applicable to the
aggregate being processed. Only those stream el-
ements pass through the filter which correlate with
the results of stage one as well as satisfy the con-
ditions of stage two. These aggregate specific filter
conditions are stored in aggregate rules which help
in initializing the filter at run-time.

2.1 Aggregations
Aggregation is the process of computation over a
group of values by a function to produce a single
value. It may be implied by both quantitative as well
as qualitative aggregates.

For example: ‘the best student in the Maths
course’ may imply ‘a student who has scored the
maximum marks in the Maths course’. Here, finding
maximum(marks) is an aggregation without which
‘best’ cannot be computed.

Since RDBMS are restricted to dealing with a
limited number of aggregates, the current NLIDB
systems too do not provide for the computation of
a wide range of aggregations which are present in
the natural language such as best, farthest, highest,
good, bad, worst, etc. Such aggregations require a
multi-staged processing wherein not only the aggre-
gation but the qualitative aspect has to be determined
and computed as well.

Before we move on to the processing methodol-
ogy, we briefly describe the elements of aggregates
which make the aggregation computing possible and
accurate through our approach.

2.2 Aggregation Elements
The primary elements of aggregation are the Aggre-
gate Head, the Aggregate Scope (Scope-Key) and
the Aggregate-Key. Every aggregate has exactly one
Head and Scope-Key. These elements together help
in the identification of the attribute, the Aggregate-
Key, on which the aggregate is applied. For bet-
ter understanding we explain each of these elements
with an example:



(2) ‘Show the average students in the NLP course
which is offered by the CS department.’

In this example, a query is posed by the user to
see the list of students who are average in the NLP
course which is offered by the CS department. In our
domain, ‘average student in a course’ implies that
the marks scored by a student are equal to the av-
erage marks computed for the NLP course. Hence,
the aggregate average is applicable on ‘marks in the
NLP course’. Thereafter, every student with marks
equal to the computed average is listed as an ‘aver-
age student’.

Figure 3: Domain Semantic Tree of sentence (2) showing
the identified domain schema elements (*), CPG relations
(K1,K2) and Aggregation Elements (in bold)

2.2.1 Aggregate Head

The Aggregate Head (AH) is an entity or attribute
of the domain schema on which the aggregation is
implied. It is the parent of the aggregate in the syn-
tactic tree.

For example, in sentence (2): the aggregation is
implied on the student entity since the modifier av-
erage is modifying the noun ‘students’. This makes
students the AH. The same is also reflected in the
Domain Semantic Tree in Figure(3).

However, in some of the instances, the AH may
be present in the sub-tree of the aggregate as well.

For example: (3) ‘What is the average of marks
awarded in the NLP course?’. Here, the aggregation
is implied on the marks attribute, making it the AH.
However, in the semantic parse, the ‘marks’ occurs
as a prepositional modifier of ‘average’.

The AH is used for establishing the Aggregation
Scope.

2.2.2 Aggregate Scope
The Aggregate Scope (AS) can be defined as the

area of influenced elements of the AH. The AS es-
tablishes which elements of the NL query are di-
rectly or indirectly involved in the aggregation.

In sentence (2), we can observe two entities which
are influenced by the AH student, namely, course
and department. This is because the query has two
dependencies in it: (a) The students are registered in
the NLP course. (b) The NLP course is offered by
the CS department. Hence, from (a), we infer that
course is directly involved with student; From (b),
the entity department becomes transitively involved
with the student entity as well. Therefore, course
and department constitute the Aggregation Scope.

Once the scope is established, we identify the
Scope-Key element and Sorting Elements.

• Scope Key: The Scope-Key is the primary ele-
ment of the scope and a crucial element for ag-
gregation computation. The Scope-Key serves
two purposes: a) The Scope-Key, in combina-
tion with the AH, helps in the identification of
the Aggregate-Key on which the aggregation
is computed; b) For each unique element of
the Scope-Key, the corresponding Aggregate-
Key value are extracted, ultimately giving us
the value set on which the aggregation will be
computed.

In Sentence (2), based on the nearness (dis-
tance) of the scope elements with the AH in the
DST (see Figure 3), the course entity is selected
as the Scope-Key. This makes all the other re-
maining elements of the AS , namely depart-
ment, as Sorting Elements.

• Sorting Elements: The remaining elements of
the AS other than the Scope-Key constitute the
Sorting Elements of the scope. Sorting Ele-
ments perform the function of the GROUP BY
clause in SQL. They help in the grouped or-
der display of the result data stream and do not
directly affect the aggregation computation as
such.

2.2.3 Aggregate Key
The Aggregate-Key is the attribute of the AH or

Scope-Key element on which the aggregate will be



computed by the application of a relevant aggregate
function. The Aggregate-Key is identified using the
AH along with the Scope-Key.

From the Aggregate Rule ‘average-1’ in Table 1,
the AH student and the Scope-Key course together
lead to the identification of marks as the Aggregate-
Key and average() as the aggregate function.

It is observed that in some NL queries the AH is
explicitly mentioned as an attribute of the element
(e.g.‘average of the marks’, in Sentence (3)). In such
a scenario, the Aggregate-Key also functions as the
AH and is used to identify the scope.

2.2.4 Aggregate Rules
These contain the necessary information about an

aggregate which is required for its computation on
the domain elements. Thus, each rule contains the
mapping of the aggregate to its aggregate function
as well as the user-defined filter conditions for the
range of an indirect aggregate, restrictive conditions
for the quantifiers and comparative conditions for
the relational operators which may occur as with the
aggregate.

From sentence (2), the identification of the AH
student gives us two domain rules for average (see
Table 1 and Table 2). Average-1 is selected as the
Aggregate Rule and Average-2 is discarded for the
given query based on the distance of the AS ele-
ments course and department with the AH student.

Elements Values
Aggregate Head student
Scope-Key course
Aggregate-Key marks
Aggregate-Function average()
Filter Condition(s) -

Table 1: Aggregate rule for ‘average’ - ‘Average-1’

Elements Values
Aggregate Head student
Scope-Key department
Aggregate-Key cgpa
Aggregate-Function average()
Filter Condition(s) -

Table 2: Aggregate rule for ‘average’ - ‘Average-2’

Once the correct Aggregate Elements and Aggre-
gate Rules are identified, we have all the necessary

information required to process the aggregate. .

2.3 Aggregation Types

Every aggregate is computed through an aggregate
function which is a common feature for all aggre-
gates. However, despite this similarity, the overall
processing of aggregates differs significantly. This
happens because of the difference in the domain
based filtering conditions and the linguistic category
the aggregate belongs to.

Based on these varied features, we divide aggre-
gation into the following types:

2.3.1 Direct Aggregations
The aggregations in this type are primarily quanti-

tative. This type implies a straight-forward one-step
application of the corresponding aggregate function
on the extracted set of values. No further processing
is required.

For Example: (4) ‘Show the maximum marks
scored in NLP.’

Here, the aggregate ‘maximum’ gives a mapping
to the aggregate function max(). Computing this ag-
gregate is a single-step process which involves the
application of max() on the attribute marks, giving
us the single highest value from the set of all marks
awarded to students in NLP.

2.3.2 Indirect Aggregations
These aggregations represent qualitative aggre-

gations. Qualitative aggregations are aggregations
which also represent a quality of the entity under
consideration. In these aggregations the results are
computed on a certain range. Qualitative aggrega-
tions have 2 distinct stages of processing:

(a) Identification of the quality and the domain
based conditions of that quality. In some cases, the
conditions implied could also have numerical ranges
as a part of processing.

(b) Aggregation computation of the extracted set
of values by the aggregate function which corre-
sponds to the aggregation and thereafter application
of the conditions which represent the quality under
consideration (identified by (a)).

For example: (5) ‘Who are the good students reg-
istered in the NLP course.’

In this example, the aggregate ‘good’ is defined
in the domain as students with 30% marks above the



average marks scored in the NLP course. Hence,
‘good’ has two features in its Aggregate Rule:
a)Range: more than 30% marks above the average of
marks; b)Aggregate Function: average() computed
on the Aggregate-Key marks. We first compute
the average of marks scored in the course. There-
after, we identify all students who have scored 30%
marks or greater than the average marks computed.
Thereby, giving a list of ‘good students’ in English.

2.3.3 Aggregations with Quantifiers
In this type of aggregates we have a quantifier

(some, few, most, etc.) which directly modifies the
aggregate. In other words, a filter is created based
on the conditions imposed by the quantifier. This
filter is applied on the result data stream on which
the aggregate has already been computed.

2.3.4 Aggregations with Relational Operators
In these aggregates, a relational operator (greater

than, less than, etc.) modifies the aggregate. Sim-
ilar to 2.3.3, the relational operator creates a filter
which is applied to the results of the aggregation it
is modifying.

In both 2.3.3 and 2.3.4, the aggregate types can be
direct or indirect. Both types re-filter the results of
aggregation stored in an intermediate data stream to
execute the conditions imposed by the quantifier or
the relational operator.

Types 2.3.2, 2.3.3 and 2.3.4 can be termed as com-
plex aggregations. With these aggregates, not only
do we have to perform aggregation but also post-
processing, through the aggregate filter, on the re-
sults of the aggregation and the SQL stream. For in-
direct aggregates the post-processing is done to give
a range to the aggregation value computed. For ag-
gregates with quantifiers and relational operators the
post-processing involves an intersection of the orig-
inal SQL stream with the aggregation result. The
conditions of this intersection are determined by the
quantifier or relational operator applied in the query.

3 Aggregation Processing

In our study, which focuses on aggregate process-
ing, we divide the NL queries into two categories:
a) queries with aggregates; b) queries without ag-
gregates. The SQL query generation process in both
the categories remains the same by not taking the

aggregate into account during semantic processing,
thus, generating the SQL query without the aggre-
gate. This approach generates a data stream of all the
necessary elements of the NL query, implicitly and
explicitly mentioned. On this stream of elements the
APL performs aggregation.

Aggregation processing involves pre-processing
of aggregation elements to initialize the Aggregate
Structure. Thereafter, the APL uses this structure’s
information to initialize its aggregation processing
and filtering modules.

3.1 Aggregate Structure
The Aggregate Structure is a knowledge structure
containing all the required and derived information
from the DST and Aggregate Rules for performing
aggregation. It has the following constituents:

P={ AE[AEH ,AESK ,AEAK ,AESE],
AGf (),
DC[DCRC ,DCQ,DCRO]

}
Where, from sentence (2),
a) AE[] represents all the aggregate elements such

as, the AH (AEH ), Scope-Key (AESK), Aggregate-
Key (AEAK) and sorting elements (AESE) i.e. the
entities and attributes student, course, marks and de-
partment respectively.

b) AGf () is the aggregate function which corre-
sponds to the aggregate and performs the aggrega-
tion. In this example, average().

c) DC[] contains the additional domain specific
conditions, namely, range criteria (DCRC) in case
of indirect aggregates, the quantifier restrictions
(DCQ) or relational operator criteria (DCRO) in
case of aggregates with quantifiers and relational op-
erators respectively.

This structure initializes the APL by providing
the necessary aggregate function in the first stage to
compute the aggregate and domain based aggrega-
tion conditions in the second stage to create the fil-
ter.

3.2 Initializing the Aggregate Structure
First, we identify the Aggregate Head (AH), the Ag-
gregate Rules and the Aggregate Scope (AS) from
the DST. Thereafter, from the selected aggregate
rule, we derive the correct aggregate function and
other possible filtering criteria. Hence, by using the



aggregate elements and the aggregate rule we initial-
ize the Aggregate Structure.

In case more than one rule is identified then
we disambiguate by comparing the distance of the
Scope-Key of each aggregate rule with the AH. If
the ambiguity remains, then we take clarification of
the intent of the user through a paraphrased genera-
tion of the aggregation elements.

3.3 Aggregation Processing through APL

The process of aggregation through the APL can be
a 3 pass process on the data stream Dstr, depend-
ing upon the complexity of the aggregation. The 1st
pass corresponds to the first stage of APL, namely,
aggregate computation. The 2nd and 3rd pass cor-
respond to the filtering criteria applied on the inter-
mediate result of the 1st pass which is then used to
further refine the data stream. Each pass uses the in-
formation from the initialized Aggregate Structure
(P) which is relevant to its processing.

If the aggregation type is Direct, the result is a
single-value output which is sent to the user after
the 1st pass. However, Indirect aggregations require
a 2nd pass to process ranged criteria and for Ag-
gregations with quantifiers and relational operators
a 3rd pass has to be made to further apply restrictive
or comparative conditions respectively. The data
stream Dstr is sorted on the Scope-Key values be-
fore the processing begins.

1st Pass - Aggregation on the data stream Dstr:
- For each unique value of the Scope-Key in Dstr,

the set of values from the Aggregate-Key are sent to
aggregate function retrieved from P(AGf ()) and the
result R1 is computed.

2nd Pass - Filtering based on aggregation range
P(DCA):

- An intermediate range RG is computed by ap-
plying P(DCRC) on R1.

- For each unique value of the Scope-Key in Dstr,
those values of the Aggregate-Key which lie within
the range RG are selected and stored in an interme-
diate record-set R2.

3rd Pass - Filtering based on quantifier restric-
tion P(DCQ) or relational operator condition
P(DCRO):

- For Quantifiers: P(DCQ) is applied on R2 to
create a record-set R3, restricting the number of
rows as specified through P(DCQ)

- For Relational Operators: An intersection is
done between Dstr and R2 with intersection con-
dition provided by P(DCRO), stored in a record-set
R3.

Based on the aggregation type - R1, R2 or R3 is
sent back to the user. Since the SQL query does not
include the GROUP BY clause, rows of R2 or R3

are grouped by the values of the Sorting Elements
from P(AESE).

4 Results

To assess the accuracy of our approach in a real-
world scenario we conducted our experiments on
a real-time database of a research institute. The
database belongs to the academic domain contain-
ing detailed information of various academic enti-
ties (students, courses, faculty, etc) and the academic
processes related to them.

For evaluation we have used 2 metrics: a) Preci-
sion: The number of NL queries correctly mapped to
a SQL query, divided by the number of NL queries
the NLIDB system answers.; b) Recall: The number
of NL queries answered by the system, divided by
the total number of NL queries.

Three MS students with detailed knowledge of
the database schema were selected to create a query
set of 180 NL queries covering all possible aggrega-
tions that can occur over the elements of the database
schema. The query set was created with 45 queries
of each aggregation type. For each NL query, a cor-
rect (expected) SQL query was prepared by an ex-
pert to cross-validate the results.

Since our approach focuses on aggregate process-
ing, we set our evaluation criteria by way of two
questions:

(1) What is the prevalence of NL queries having
a correct semantic parse, therefore, a correct SQL
query ?

A question is considered to be correctly answered
if the NLIDB system generates one or more SQL
queries which matches with the SQL query prepared
by our expert. From Table 3, we can see that the
NLIDB system has a precision of 92.3% and recall
of 87.77%. On further evaluation, the reason for er-



Queries Answered Correct Semantic
Parse
Error

SQL
Er-
ror

180 171 158 9 5

Table 3: Result of NL query execution on NLIDB (Preci-
sion 92.3%)

roneous semantic parse was found to be the inabil-
ity of the semantic parser to find the entities within
the schema accurately. The problem in SQL gener-
ation was incorrect path generation leading to incor-
rect entity mapping with the database schema.

(2) Which out of the correctly parsed NL queries
can be further processed by the Aggregation Pro-
cessing Layer accurately ?

Table 4 shows that domain based aggregation pro-
cessing, which includes complex aggregations as
well, gives an accuracy of 98.1%. The Aggrega-
tion Processing Layer was able to process Direct
aggregations, domain based Indirect aggregations
and quantifiers without mistakes from the given data
stream. The errors in aggregations with relational
operators were due to the errors in computing the
intersection of the data stream with the intermedi-
ate result stream. Interestingly, from Table 4, we
see that NL queries with quantifiers and relational
operators could be the reason for incorrect semantic
parses and SQL query generation since they have a
lower number of correct parses as compared to other
aggregation types.

The results show that through our approach we
can successfully process domain based complex ag-
gregations while maintaining a relatively high accu-
racy which is comparable to some of the state-of-
the-art systems like PRECISE (Popescu et al., 2003)
and Mooney’s learning NLI (Tang and Mooney,
2001).

4.1 Observations

By performing aggregation independent of the
RDBMS, we are able to deal with certain important
issues that most conventional RDBMS and NLIDB
systems do not resolve:

4.1.1 Aggregation on Entities
In RDBMS, aggregations are applicable only on

attributes of an entity (Elmasri and Navathe, 2010)
and not on the entity itself i.e. only on the columns

of a table. However, with queries in NL, a person
may imply aggregation on an entity as well. Aggre-
gation, in such cases too, refers to some attribute of
the entity but NL creates a level of abstraction in the
utterance which has to be resolved.

For example: (6) ‘Who is the tallest student in the
Engineering department’.

Here, ‘tallest student’ implies ‘student with the
maximum height’. This transfers the aggrega-
tion from the student entity to the height attribute.
Hence, when the ‘tallest student’ has to be listed we
find the student with the maximum height amongst
all the students in the Engineering department.

In our approach, we maintain such implications
(as mentioned in the above example) with the help of
the Aggregate Head, Aggregate-Key and Aggrega-
tion Rules. Hence, we are able to successfully deal
with aggregation on entities.

4.1.2 Complex Aggregations
Those aggregations which require domain based

predicates in addition to the aggregate function are
called Complex Aggregations. They represent qual-
itative aggregates generally, sometimes occurring
with quantifiers or relational operators.

For Example: (6) ‘Show a few good students reg-
istered in the English course?’ Here, the interpreta-
tion of the indirect aggregation, ‘good students’, is
the same as in sentence (5) of Section 2.3.2. How-
ever, the quantifier ‘few’ further restricts the number
of ‘good students’ according to the domain based
criteria applicable on the quantifier.

RDBMS systems cannot process such complex
aggregates without external functions. However,
the APL manages the domain predicate and quan-
tifier processing by obtaining the required informa-
tion from the Aggregate Rules and integrating them
in the aggregate filter, which is the second stage of
aggregate processing in our system.

4.1.3 Null Results with nested queries
RDBMS systems execute nested queries in a hier-

archical manner from the innermost to the outermost
query and the result is carried forward to the im-
mediate outer level query. If this contains a NULL
value and is passed to an aggregate function in the
outer query as input then the query execution termi-
nates with an error exception (Klug, 1982).



Aggregation Type NL Queries Correct Semantic Parse and SQL Correct Aggregation Processing
Direct 45 41 41

Indirect 45 42 42
With Quantifiers 45 39 39

With Relational Operators 45 36 33
Total 180 158 155

Table 4: Result of Aggregation Processing on queries with correct semantic parse and SQL (Precision 98.1%)

For Example: In sentence (6), if the height at-
tribute were to contain NULL values, the query in
RDBMS would terminate with no results.

In our approach, we do not create nested queries
for aggregation. We compute aggregation by pass-
ing the data stream through a custom aggregate func-
tion which discounts the rows having NULL values.
Thus, the framework does not crash.

4.1.4 Run-time complexity of the nested
queries

In some nested queries, the WHERE clause of the
inner query block contains a join predicate with ref-
erence to a relation of the outer query block. Be-
cause of this, the inner query block is processed once
for each row of the outer relation which satisfies all
simple predicates of the outer relation (Kim, 1982).

For Example: (8) ‘Show the student name with
maximum marks in the city from which they gave
the examination’. This generates the following
query where S and SP refer to the same student rela-
tion.

SELECT S.name
FROM student as S
WHERE_S.marks=(SELECT MAX(S.marks)

FROM student as SP
WHERE SP.city=S.city)

For 4.1.4, our approach remains efficient since the
aggregation processing is done outside the RDBMS.
There are no re-iterations. In the first stage, the
aggregate ‘maximum’, identified by max(), is com-
puted. Then the stream is filtered for student names
in the second stage.

To optimize 4.1.3 and 4.1.4 in RDBMS, the
next best approach is to create queries by IN-
NER/OUTER joins which try to reduce the nested
query to an equivalent canonical form. How-
ever, this method gives errors in certain aggregates
(e.g.count) (Steenhagen et al., 1994), which can
be solved by creating a temporary table containing

the aggregate functions and joins that they represent.
However, automation of nested and join query cre-
ation at run-time is a complex process as compared
to our approach.

4.2 Limitation
Our approach, presently, is not designed to handle
NL queries having multiple aggregates.

For example: (9) ‘Who are the good students in
the CS department with poor grades in the NLP
course?’ In such questions, an intersection of the
results of aggregation on two separate data streams,
namely, ‘good students in the CS department’ and
‘students with poor grades in the NLP course’ has to
be done. This requires the APL to run twice (once
for each stream) before the intersection, which is
presently not facilitated.

5 Conclusion and Future Work

In this paper, we present a novel approach to han-
dle aggregations occurring in a NL query. Our key
contribution is the development of an aggregation
framework that can deal with the direct quantitative
as well as domain based complex aggregations ef-
ficiently. By creating a framework independent of
a database, we’ve made the system robust, scalable
and easily customizable by non-experts while ensur-
ing a high accuracy at the same time. In addition to
this, the framework aids in removing the pre-defined
automated process of nested SQL query generation
for aggregations. To the best of our knowledge, ours
is the first formal approach towards dealing with a
large variety of simple and complex aggregations
with results guaranteeing a high accuracy in their
resolution.

Future works include extending the framework to
deal with multiple aggregations in an NL query and
creating a hybrid statistical aggregation framework
to transition from domain based to generalized ag-
gregate processing.



References
Surajit Chaudhuri. 1998. An overview of query opti-

mization in relational systems. In Proceedings of the
seventeenth ACM SIGACT-SIGMOD-SIGART sympo-
sium on Principles of database systems, pages 34–43.

Ramez Elmasri and Shamkant Navathe. 2010. Funda-
mentals of Database Systems. Addison-Wesley Pub-
lishing Company, USA, 6th edition.

Abhijeet Gupta, Arjun Akula, Deepak Malladi, Puneeth
Kukkadapu, Vinay Ainavolu, and Rajeev Sangal.
2012. A novel approach towards building a portable
nlidb system using the computational paninian gram-
mar framework. Asian Language Processing, Inter-
national Conference on Asian Language Processing,
pages 93–96.

Joseph M. Hellerstein. 1997. The case for online ag-
gregation: New challenges in user interfaces, perfor-
mance goals, and dbms design.

Won Kim. 1982. On optimizing an sql-like nested query.
ACM Trans. Database Syst., 7(3):443–469.

Anthony Klug. 1982. Equivalence of relational algebra
and relational calculus query languages having aggre-
gate functions. J. ACM, pages 699–717.

Yunyao Li, Huahai Yang, and H. V. Jagadish. 2006. Con-
structing a generic natural language interface for an
xml database. In In EDBT, pages 737–754.

2013. Mysql 5.0 reference manual :
http://dev.mysql.com/doc/refman/5.0/en/group-
by-functions.html.

2010. Oracle database sql language reference, 11g re-
lease 1 (11.1).

Ana-Maria Popescu, Oren Etzioni, and Henry Kautz.
2003. Towards a theory of natural language inter-
faces to databases. In Proceedings of the 8th inter-
national conference on Intelligent user interfaces, IUI
’03, pages 149–157.

Hennie J. Steenhagen, Peter M. G. Apers, and Henk M.
Blanken. 1994. Optimization of nested queries in a
complex object model. In In Proc. of the Int. Conf. on
Extending Database Technology (EDBT, pages 337–
350. Springer-Verlag.

Lappoon R. Tang and Raymond J. Mooney. 2001. Us-
ing multiple clause constructors in inductive logic pro-
gramming for semantic parsing. In ECML, pages 466–
477.


