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Abstract

Microblog portals, like Twitter, are promi-
nent online social networking platforms
today. Users of such platforms exchange
discussions and opinions around events
and interests. Streaming algorithms have
emerged to detect events early in their
lifecycle from massive-scale microblogs.
Methods have been developed to identify
topical discussions evolving over time, on
microblogs like Twitter, comprising of un-
structured data and no explicit discussion
thread. Such topical discussions comprise
of semantically connected event clusters.
However, no study on the characteristics
of community structures formed around
the topical discussion clusters have been
proposed in literature. In the current work,
we identify the structural communities,
formed by the social network participants,
for the topically connected semantic clus-
ters, using modularity maximization al-
gorithms. We observe better communi-
ties with significantly higher modularities
within topical (semantic) clusters com-
pared to global, showing like-mindedness
of individuals participating in such com-
munities. Our work is useful for applica-
tions that aim to leverage the pattern and
structure of social spread of information.

1 Introduction

Social media has emerged as one of the largest
pools of user-generated content. A plethora of
social networking platforms have established over
the better half of the past decade, thereby provid-
ing a level-playing platform for individuals to par-
ticipate and interact in a social manner. Among
the multitude of online social media platforms, the
significant ones today comprise of social activity

and interaction networks such as Facebook, mi-
croblogging networks such as Twitter, photo and
image sharing and pinning platforms such as Pin-
terest and video sharing and distribution portals
such as Youtube.

Of late, there has been a surge of research in-
terest in propagation of topics, influence and in-
terest over social network and media, including
over social microblogging platforms like Twitter.
A recent study by (Kwak, 2010) has established
that Twitter helps topical information diffuse in a
manner akin to news media. Twitter and other so-
cial networks, with their millions of users and con-
nections along with multiple millions of text mes-
sages, are expected to have high levels of entropy
by default. However, contrary to such expecta-
tion, recent work by (Narang, 2013) can identify
social discussion threads on Twitter and other mi-
croblogging platforms, by socio-temporally corre-
lating topically related text clusters.

It is of interest to note that unstructured mi-
croblogs like Twitter are hotbeds of conceptions
of trending events. A typical characteristic of such
trending events is that they tend to get involve in-
dividuals that are interested in those events. Such
behavior apparently gets driven by similarity of in-
terest of the participating individuals towards the
topics associated with the event. However, the
finding of (Narang, 2013) that topical discussions
on microblogs, formed around events, show a ten-
dency to evolve socially is interesting. This essen-
tially introduces the significance of social familiar-
ity in the propagation of information and interest
along online social media. In addition, this helps
distinguishing such evolving conversations around
well-formed topics, from isolated expressions of
topical interest.

While the finding by (Narang, 2013) is interest-
ing, the study does not address any investigation
pertaining to the characteristic of social communi-
ties participating in topical discussions. Clearly,



it is important to understand the true social na-
ture of the communities formed by the partici-
pants in semantically connected discussion topics.
Further, an attempt to conduct such a study will
beg another question of research merit: are the
communities formed by virtue of online discus-
sions more like-minded compared to the globally
formed structural community?

In this study, we propose addressing the above
questions. To this, we propose using a well-known
method, namely modularity, to measure the good-
ness of the communities formed around each se-
mantically connected topical cluster. Using mod-
ularity, we also evaluate the goodness of inher-
ent structural community formed in the social net-
work graph. We compare the modularity values of
the communities formed around the topical clus-
ters and the global values. We demonstrate sig-
nificantly higher modularity values for the topi-
cal communities, thereby underscoring the impact
of like-mindedness, in the process of information
flow, on top of the apparent entropy of microblogs.
To the best of our knowledge, ours is the first study
of its kind.

We use three large scale real-life Twitter
datasets, namely Libya 2011 political turmoil,
Egypt 2011 political turmoil and London 2012
Olympics, having thousands of users and up to
millions of tweets, to conduct experiments. For
all datasets, we observe significant presence of
communities within topic clusters. We find sig-
nificant improvement in modularity for commu-
nities formed within topic-clusters, compared to
the global social graph based community struc-
ture. We believe this insight to be both novel and
interesting. This leads to the observation that like-
minded people with similarity in interest of topics
are structurally better connected.

In summary, the main contributions of our work
are the following.

• We investigate the goodness of the communi-
ties formed around topical discussions, using
well-known measurement techniques.

• We provide a comparative evaluation the
goodness of the topic-based communities
against the global community structure
formed in the topic-independent social net-
work graph.

• We empirically demonstrate a trend of higher
degree of like-mindedness of individuals par-

ticipating in topical communities, compared
to the like-mindedness of the overall graph.

• We demonstrate our findings on microblog-
ging data using three real events.

The rest of our work is as follows. In Section 2,
we explore related literature and discuss the state
of the art. Subsequently, in Section 3, we discuss
the problem settings in more detail, and provide
an outline of our approach to solve the problem.
We present our experimental results in Section 4.
Finally, we conclude in Section 5.

2 Related work

Significant research has been conducted on con-
tent analysis of information discussed on social
media sites (Kwak, 2010). (Grinev, 2009) demon-
strate TweetSieve, a system that obtains news on
any given subject by sifting through the Twitter
stream. Along similar lines, Twinner by (Abrol,
2010) identify news content of a query by taking
into account the geographic location and the time
of query. (Nagar, 2012) demonstrate how content
flow occurs during natural disasters.

Several ways to cluster social content have been
studied. There has been work on clustering based
on links between the users by doing agglomer-
ative clustering, min-cut based graph partition-
ing, centrality based and Clique percolation meth-
ods (Porter, 2009), (Fortunato, 2007). Other ap-
proaches consider only the semantic content of
the social interactions for the clustering (Zhou,
2006). More recently there has been work on com-
bining both the links and the content for doing
the clustering (Pathak, 2008), (Sachan, 2012). In
(Narang, 2013) relationships between clusters are
determined based on semantic, linkage and tempo-
ral information. Studies such as (Xu, 2000) have
shown how local context analysis can improve the
effectiveness of information retrieval. In the cur-
rent work, we aim to study the phenomenon of so-
cial connections, across clusters, in the topically
similar local social neighborhood.

Social network based community identification
and graph structure analysis have been areas of re-
search interest among academicians, and a signifi-
cant number of prior studies have been conducted
in these areas (Fortunato, 2007). Communities are
not only useful in different kinds of academic stud-
ies, but also for practical applications (Jaho, 2011)
(Modani, 2012).



Multiple schools of thoughts have emerged in
the process of defining and identifying communi-
ties. One body of work is dedicated to identifying
structural communities from input graphs, some of
which are hard to find. This includes discovering
cliques, quasi-cliques, k-cores, k-cliques, k-clubs
and k-plexes (Dourisboure, 2007) (Gibson, 1998)
(Hanneman, 2005) (Modani, 2008). Overlapping
communities have been studied in (Chen, 2010)
(Palla, 2005) (Sun, 2010).

Another body of work concentrates around par-
titioning the graph into subsets of vertices, such
that, the connections of pairs of vertices within the
subset of vertices are dense, while the connections
of pairs of vertices across two subsets of vertices
are of lesser density. This approach was proposed
by (Girvan, 2002) and was taken further forward
by (Clauset, 2004) and (Newman, 2004) in sub-
sequent works. This was further followed up by
spectral analysis techniques (Newman, 2006). The
objective of these approaches are to maximize the
modularity of partitioning a given input graph by
identifying vertex subsets appropriately.

The BGLL algorithm by (Blondel, 2008) pro-
vides the fastest known algorithm for community
finding based upon such graph partitioning. BGLL
is known to provide communities with the highest
modularity values among the known, state-of-the-
art techniques. In our work, we use the BGLL al-
gorithm to find the best possible graph partitioning
based communities, with maximized modularity,
in the fastest possible manner.

While our literature survey shows significant
volumes of prior background art, which will be
useful for us to solve the current problem, we do
not find any work that attempts to solve our prob-
lem at hand. This establishes the novelty of our
current work. At the same time, a review of the
existing literature also amply motivates the need
and timeliness for a study such as ours.

3 Problem settings and our approach

In this section, we describe the problem settings
and propose the solution approach that we follow.

3.1 Problem settings

Objective: The objective of our work is to iden-
tify structural communities within topical clus-
ters formed around semantic concepts, and de-
rive insights about the characteristics of the com-
munities. We aim to study the quality of com-

munities thus formed, and compare these with
the non-semantic communities that emerges from
the topic-independent social network connection
graph.

In order to meet our objective, there are a num-
ber of technical challenges to be overcome. We
list the set of challenges below.

• First of all, we need to create the topic-based
semantic clusters for a given event. This set
of clusters will identify the independent set of
discussions happening around the event un-
der investigation.

• We now need to apply appropriate commu-
nity detection algorithms in order to identify
the communities formed by the social net-
works of the individuals participating in the
topic clusters.

• Also, we find it interesting to report some of
the basic characteristics of the topical com-
munities discovered in the process.

• Finally, we need to be able to measure the
goodness of these topical communities, as
well the global communities, so that we com-
pare across these communities and affirm the
goodness of topical communities compared
to non-topical ones.

3.2 Our approach

In this subsection, we outline our approach
to solving the problem at hand. We first use
an online streaming event detection algorithm
for finding clusters from tweets (Weng, 2011).
Following that, we attempt to discover graph
partitioning based communities, formed by the
set of the participants participating in each of the
topical clusters found above. To this, we use a
well-known modularity maximization algorithm
- namely, BGLL (Blondel, 2008) - that creates
disjoint graph communities with modularities
being the highest in the known state of the art.
We subsequently identify the communities on the
overall social network graph also using BGLL,
and thereby measure the global graph modularity.
We investigate the modularity values of the topical
clusters and the global graph modularity, in order
to determine the comparative goodness of the
communities found by each of the processes.



Basic notations and definitions
E denotes the list of events extracted from Twit-
ter Stream. Since, event extraction is not the
key focus of this work, we use a well-known
online clustering algorithm ((Weng, 2011)) to
generate event topics from streaming Tweet
data, thereby creating clusters of tweets forming
event topics. An event Ei is represented as
{(Ki

1,K
i
2, . . . ,K

i
n), (Li

1, L
i
2, . . . , L

i
m), [T i

s , T
i
e ]},

where Ki denotes the set of keywords extracted
from the tweets which form the event Ei, Li is
set of locations in event cluster and T i is time
period of the event. We use existing established
methods for computing K, L and T. K contains
idf vector and proper nouns (extracted by PoS
tagging) from the tweets. L is generated by using
Standford’s NLP Toolkit and associated Named
Entity Recognizer. T is simply the time of first
and last tweet in the event cluster.

Forming topical clusters
As mentioned previously, we use the online
streaming event detection algorithm by (Weng,
2011) for finding topical (semantic) clusters from
tweets. More specifically, we use the EDCoW
method to form topical clusters. This method uses
cross-correlation methods of (Orfanidis, 1996) in
order to measure similarity between two signals.
The intuition behind this event detection algo-
rithm, in order to form topical clusters, is to com-
pute similarity between words, and thereby group
sets of words with similar burst patterns.

In signal processing, the cross-correlation be-
tween two signals, represented as functions f(t)
and g(t), is given by

(f ∗ g)(t) =
∑

f∗(τ)g(t+ τ) (1)

In Equation 1, the term f∗ denotes the complex
conjugate of f . Cross-correlation computation is
used to shift one signal (in this case, g in Equa-
tion 1), and calculates the dot product between the
two signals. In other words, it measures the sim-
ilarity between the two signals as a function of a
time-lag applied to one of them.

Computation of cross-correlation being a pair-
wise operation, it is expensive to measure the
cross-correlation for all signal pairs for any mas-
sively populated microblog like Twitter. How-
ever, as pointed out by (Weng, 2011), many
of these signals happen to be trivial, and this
has been proved by empirical investigation of a

large dataset. So while the algorithm for find-
ing out cross-correlation is O(n2), the authors go
on to show that practically, after applying filters
for eliminating undesirable outliers and making
median-based selections, less that 5% of the to-
tal words tend to remain. Therefore, the quadratic
complexity of the process remains tractable for
practical purposes. After this, it applies Newman’s
modularity techniques (Newman, 2004) (New-
man, 2006) for graph partitioning.

Further, the EDCoW algorithm by (Weng, 2011)
quantifies event significance, as each microblog
post (like a Tweet) is associated with only a few
words because of their short length, and the al-
gorithms requires at least 2 words to be a part of
the message for functioning. One can denote the
subgraph corresponding to an event c as: Gc =
(V c, Ec,W c). In this, V c is the vertex set and
Ec = V c × V c. W c contains the weights of the
edges that are given by a portion of the correlation
matrixM. The event significance is hence defined
by (Weng, 2011) as:

ε = (
∑

wc
ij)×

e1.5n

(2n)!
, n = |V c| (2)

Equation 2 comprises of two parts. The first
part sums up all the cross correlation values
between signals associated with an event. The
second part discounts the significance if the event
is associated with too many words. The higher
is the ε, the more significant is the event. Also,
the EDCoW algorithm by (Weng, 2011) filters
events with exceptionally low value of ε, such as
(ε� 0.1).

Community finding and modularity
We now attempt to find social communities
formed by the participants of each topical (seman-
tic) cluster, by investigating each of the clusters.
Let the set of clusters, {C}, comprise of k clus-
ters, namely {c1, c2, ...ck}. For our solution, for
any cluster ci ∈ {C}, we first consider the set
of vertices, Vci . We then construct the induced
subgraph of the set of vertices, based upon social
connections, constructing edges Eci such that the
pair of vertices constituting the edge belong to the
same cluster. This process leads to the construc-
tion of an induced subgraph Gci = {Vci , Eci}.
Therefore, at the end of this process, for the k clus-
ters, we have a set of k induced subgraphs, namely
Gc1 , Gc2 , ..., Gck .



We now attempt to find graph partitioning based
communities on each of the induced subgraphs.
For this, we choose a graph partitioning based al-
gorithm, which is a variant of the modularity max-
imization algorithm family. One of the most note-
worthy characteristics of graph partitioning based
approaches is that the communities derived are
necessarily non-overlapping in nature. In other
words, there will be no single vertex, at any time,
belonging to one community, and also belong to
another community at the same time.

Modularity was proposed by Newman in (New-
man, 2004), and was enhanced with spectral meth-
ods in (Newman, 2006). Modularity is a quantity
that attempts to measure the difference of, the ac-
tual sum of weight of edges that lie within a given
component after the graph is partitioned, and the
expected sum of edge weights if the edges were
drawn at random by sheer probability. Higher
modularity values indicate better partitioning of
the graph such that communities of better quality
get grouped together.

Let Aij be the number of the edge between ver-
tices i and j. Here, Aij is an element of the adja-
cency matrix of the social network. One can easily
show that for a network comprising of m edges,
the expected number of edges connecting vertices
i and j, if the positions of the edges are random-
ized, is given by kikj/2m, where ki and kj are the
degrees of node i and j respectively. Hence, the
actual number of edges between i and j minus the
expected number of edges is Aij − kikj/2m. The
modularity Q is derived by adding all the pairs of
vertices belonging to the same community. If we
label the communities and define si to be the label
of the community to which node vertex i belongs,
then we get modularity as:

Q =
1

2m

∑
ij

(Aij −
kikj
2m

)δsi,sj (3)

In the above, δsi,sj is the Kronecker delta, and
si and sj are the index of the subgraph that the ver-
tices vi and vj belong to respectively. The leading
constant 1

2m is included by convention: it normal-
izes Q to measure fractions of edges rather than
total numbers but its presence has no effect on the
position of the modularity maximum. The objec-
tive here is to partition the input graph G such that
the value of the modularity, namely Q, is maxi-
mized.

In case of a weighted graph like ours, one can

replace Aij by the weighted edge wij , thereby
leading to the following equation:

Q =
1

2m

∑
ij

(wij −
kikj
2m

)δsi,sj (4)

Newman’s spectral graph based approach to op-
timize modularity (Newman, 2006) leverages the
above concept. It initially creates a modularity
matrix B on a given graph G, in which the ele-
ments can be obtained by:

Bij = wij −
di.dj
2m

(5)

Following this, the symmetric matrix B un-
dergoes an eigen-analysis process, by which
the largest eigenvalue and the corresponding
eigenvector ~v are found. Finally, G is split into
two subgraphs based on element signs in ~v. The
spectral method is recursively applied to each of
the two subgraphs, thereby dividing them into
smaller and smaller subgraphs, as long as the
overall modularity of the graph partition keeps
increasing, thereby forming communities with
high modularity.

The BGLL algorithm
After introducing modularity, we now focus on a
specific modularity maximization algorithm that
we use in the current work, namely the BGLL
algorithm. This is the technique proposed by
(Blondel, 2008), and till date is known to be one
of the fastest algorithms that also partition the
graph to obtain the highest modularity values in
the known state of the art. We use BGLL to dis-
cover modularity-maximized communities in each
of the topic-cluster-induced subgraphs, as well as
the global graph.

The BGLL algorithm has two phases. In the
first phase, each node is assigned to a singleton
cluster. The clusters are now reorganized by mov-
ing a vertex into the group of neighborhood ver-
tices, and thereby measuring the change of mod-
ularity. The vertex is retained in the group for
which the modularity gain is positive and max-
imum. This process is repeated for all vertices,
until no further modularity value improvement re-
mains possible.

Here, the modularity gain, ∆Q, is computed as:

∆Q = [

∑
in +2ki,in

2m
− (

∑
tot +ki
2m

)2]

−[

∑
in

2m
− (

∑
tot

2m
)2 − (

ki
2m

)2]

(6)



Here,
∑

in is the sum of edge weights inside a
given community,

∑
tot is the sum of the weight of

incoming edges to the community, ki is the sum of
the weights of the edges incident to vertices within
the community, ki,in is the sum of the weights of
the edges from i to vertices in the community, and
m is the sum of the weights of all the edges in the
social network.

The second phase aims to build a network by
treating the communities found in first phase as
vertices of a graph, thereby creating hypernodes,
and creating an edge between two hypernodes
where the weight is given by the sum of weights
of the edges in the communities.

Goodness of our method
After having found the communities for each of
the topical (semantic) clusters as well as for the
overall social network graph, we now attempt to
measure the goodness of our findings. To this, we
observe the distribution of the modularity values
of the induced subgraphs thus formed. We further
measure the various statistical parameters of the
modularity distribution.

The number of clusters where Mi > M, that
is, the number of clusters where modularity of ci
is higher than the global graph modularity, is an
interesting measure. Another interesting measure
is the mean cluster modularity, µ(M), and a com-
parison of this value with the global graph modu-
larity. These values show the goodness of our find-
ings. As we shall observe in the subsequent sec-
tion, our experiments indicate encouraging values
of modularity and its distribution.

Another interesting observation is that, by
virtue of our construction methodology, each of
the communities we look at, will completely be-
long to one topical (semantic) cluster, and never
span across cluster boundaries. In essence, these
communities can be viewed as social communities
formed on graphs of shared interest - namely, the
topic central to the corresponding cluster. There-
fore, the higher the value of modularity, the higher
is the degree of life-mindedness among the cluster
members.

Our experiments show that the social network
graphs tend to exhibit a higher degree of like-
mindedness compared to the global graph, as in-
ferred from the modularity value distribution over
the set of induced subgraphs.

4 Experimental results

We now proceed on to conduct the experiments,
following the algorithms and sequence described
in Section 3.

4.1 Data description

The first step is data collection. We collect Twit-
ter data from three large-scale events: (1) A 2011
Libya political turmoil that had created significant
impact on social media, (2) A Egypt 2011 political
turmoil data that also had a significant footprint
on Twitter and (3) The London Olympics 2012
data. The data was collected using (Libya OR
Gaddafi), (Egypt OR Protest) and (Olympic OR
Olympics) as target keywords respectively. This
implies, all the tweets used for experimentation
contain at least one of the two above-mentioned
keywords, or both, for each corresponding dataset.

We further collect the social network (follow-
ers) data for these users. We use these datasets
to qualitatively inspect the goodness of our ex-
tended semantic edge generation algorithm. Ta-
ble 1 shows the statistics of all the 3 datasets used
in our study.

4.2 Forming the baseline graphs

Since event cluster detection is not the focus of
our work, we have used the online clustering algo-
rithm by (Weng, 2011) to generate the event clus-
ters from the given tweets, as described in Sec-
tion 3. The outcome of applying this algorithm is
the set of clusters, as illustrated in Table 1.

For each cluster discovered in the process, we
now require constructing the induced subgraph of
the participants of the cluster with at least one
tweet, over the social network followership edges.
In order to construct this, we retain all the edges, in
which, both the endpoints belong to the same clus-
ter. At the same time, we discard any cross-cluster
edge. Please note that because of the method of
our construction, an edge can potentially belong
to multiple clusters - in other words, more than
one cluster could have overlap in terms of partic-
ipants and edges; however, there can be no edge
that would not have both its endpoints in the same
cluster for a given graph partition.

After construction of the semantic (topical)
clusters and the social graphs, we attempt to iden-
tify the communities within each of the clusters,
and measure the modularities of these communi-
ties, in order to meet our stated objective.



Table 1: The columns in the table show a) keywords used to search Twitter to collect the dataset, b) dates
for which the data was collected, c) number of tweets collected, d) number of clusters and e) number of
users on the social network

Dataset Keywords Timespan Tweets Clusters Number of Users
Egypt Egypt, Protest 1 - 4 Mar’11 60,948 142 37,961

Olympics Olympics, Olympic 27 Jun - 13 Aug’12 2,319,519 299 1,313,578
Libya Libya, Gaddafi 4 - 24 Mar’11 1,011,716 1,344 83,177

Table 2: Comparison of the modularity of the global graphs and those of the topical (semantic) cluster
graphs. Please note that % Topical Clusters Mod > Global denotes the percentage of topical clusters in
each dataset in which the modularity values are higher than the global modularity (zero values excluded).

Number of Global % Topical Clusters Mean Topical Maximum
Dataset Clusters Modularity Mod > Global Cluster Modularity Modularity

Egypt 142 0.48 75.18% 0.59 0.94
Olympics 299 0.56 78.64% 0.71 0.98

Libya 1,344 0.66 12.1% 0.40 0.83

4.3 Experimental results
After forming the baseline graphs and discovering
the topical (Semantic) clusters, we now conduct
the following actions.

• We identify the communities within each
cluster, and subsequently find the modularity
of each cluster based upon the communities
formed.

• We identify the communities in the original
input graph, and find the modularity of this
community distribution.

• We compare the two modularities found by
the above processes.

Table 2 shows basic statistics of the modular-
ities we find for the individual clusters, as well
as the modularity of the overall graph. As clearly
seen from the table, for all the datasets, the modu-
larity values are significant. Figure 1 visually rep-
resents the distribution of the modularity values,
in form of a scatter plot.

From our experimental observations, it is ob-
vious that in case Egypt and Olympics, a sig-
nificant fraction (more than 3/4th in both the
cases) of the modularity values at the per-cluster
level is higher than the global modularity. In
case of Libya, this fraction is much smaller
(only 1/8thofthedataset), but still there is evi-
dence of this phenomenon. Figure 1(a) and Fig-
ure 1(b) therefore visually show most of the top-

ical cluster distribution over the global level, thus
showing pronounced impacts of presence of like-
mindedness. Figure 1(c) shows the later parts
(right-hand side) of the modularity distribution
cross the global level though the values are be-
low the global level for most of the earlier parts
(left-hand side) for this graph, showing presence,
albeit somewhat less pronounced impacts, of like-
mindedness.

In fact, the maximum modularities in some
cases are higher than 0.9, the highest being 0.98
for Olympic dataset, which is surprisingly high,
indicating a near-perfect community structure.
The mean modularity of topical clusters, the max-
imum modularity of topical clusters and the per-
centage of clusters that have a modularity value
higher than the corresponding global modularity -
all clearly indicate the goodness of our approach.

4.4 Discussions
As obvious from the experimental results, we
observe high modularity values (and associated
measurements) for topical communities formed
around semantic clusters, compared to the global
modularity. These higher modularity values and
the associated factors measured, indicate the good-
ness (formation of comparatively stronger com-
munities) of the topic-based communities, com-
pared to the global community structure formed
in the topic-independent social network graph.

The semantic clusters are formed based upon
discussion topic similarity. Therefore, the signif-



(a) Egypt modularity values

(b) Olympic modularity values

(c) Libya modularity values

Figure 1: Modularity value distribution for the
three datasets, for topical (semantic) clusters and
the global graph

icantly high presence of stronger communities in-
dicate topical like-mindedness of the community
participants in the communities within semantic
clusters.

This helps us to draw the conclusion that on mi-
croblogging platforms like Twitter, there is a sig-
nificant impact of topical like-mindedness on for-
mation of social communities.

5 Conclusions

In this work, we studied the formation and char-
acteristics of social communities within seman-
tically related topical clusters. We used a well-
known technique to identify the semantically re-
lated topical clusters. Subsequently, we used an-
other well-understood method to discover com-
munities within each of the topical clusters. We
found the modularities of each of the communities

formed along the topical clusters. We proved that
these modularities are significantly higher than
that of the communities formed from the under-
lying structural graph.

Our work leads to the observation that like-
minded people with similarity in interest of topics
are structurally better connected. This also proves
that the spread of information is likely to be social,
and more along like-minded individuals forming a
community based upon their familiarity network.

This work will be useful for social networking
and other families of applications that aim to lever-
age the pattern and structure of social spread of in-
formation. As future work, we propose to identify
implicit interest groups from the nature of infor-
mation propagation. We also believe that identi-
fying contextually related topics based upon the
underlying social network will be a novel and in-
teresting study as a next step.
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