postagger_srs_0.3

Functional Specifications of

POS Tagging Engine

1. Introduction

Part of speech tagging is the process of assigning a part of speech to each word in the sentence. Identification of the parts of speech such as nouns, verbs, adjectives, adverbs for each word of the sentence helps in analyzing the role of each constituent in a sentence. There are a number of approaches, such as rule-based, statistics based, transformation-based etc. which are used for POS tagging. Here we propose to use statistical approaches.

2. Input-Output Specifications

Input:
TKN_

Output:
CAT_

Input specifications require that property TKN_ must be defined in the input SSF that is given to the POS Tagger.

CAT_ can have values as below
NN – Noun

NST – Nloc

NNP – Proper Noun

PRP – Pronoun

DEM – Demonstrative

VM – Verb-Finite

VAUX –Verb Aux

JJ – Adjective

RB – Adverb

PSP – Post Position

RP – Particles

CC – Conjuncts

WQ – Question Words

QF – Quantifiers

QC – Cardinal

QO – Ordinal

CL – Classifier

INTF – Intensifier

INJ – Interjection

NEG – Negation

UT – Quotative

SYM – Sym

*C – Compounds

RDP – Reduplicative

ECH – Echo

UNK - Unkown

Examples:

Input

ADDR_
TKN_

OTHR

1

usa

<fs af=’vaha,pron…’>

2

ladake
<fs af=’laDakA,noun…’>

3

ne

<fs af=’ne,psp…’>

4

kelA

<fs af=’kelA,noun…’>

5

KAyA

<fs af=’KA,verb…’>

6

WA

<fs af=’kelA,verb…’>

Output

ADDR_
TKN_

CAT_

OTHR

1

usa

PRP

<fs af=’vaha,pron…’>

2

ladake
NN

<fs af=’laDakA,noun…’>

3

ne

PRSG

<fs af=’ne,psp…’>

4

kelA

NN

<fs af=’kelA,noun…’>

5

KAyA

VM

<fs af=’KA,verb…’>

6

WA

VAUX

<fs af=’kelA,verb…’>

.

SYM

3. Flow Chart of POS Tagger

Flow chart of POS Tagger will show the over all view of the program control flow from one module to other. It shows the various decision points inside the program.

Fig.1 ― Flow chart for POS Tagger

 No

 Yes

Fig.2 ― Flow Chart of Training Phase

 Yes

 No

 No

 Yes

Fig.3 ― Flow Chart of Testing Phase

4. Process Descriptions

4.1 Convert SSF to TnT Format

Convert the training file which is in the SSF format to TnT format. Also convert the testing file which is in SSF format to TnT format.

4.2 Convert TnT Format to SSF

Convert the output generated by POS Tagger which is in TnT format to SSF format.

4.3 Build Letter Tree

Take words and tags from the training file to build a suffix tree data structure. In the tree structure store the word and tag frequency. Build the letter tree taking the word and its frequency as the argument

4.4 Build Transition Count Matrix and Build Emission count matrix

Build a hash of the tag sequence and its frequency.

4.5 Finding Best Tag Sequence

Take a sentence and apply Viterbi algorithm to find best tag sequence.

4.6 Smoothing for Tag Sequence

When tag sequence is not present apply smoothing techniques according to runtime arguments of the postagger.

4.7 Smoothing for Words

Whenever the word is not found in the matrices apply suffix smoothing technique.

4.8 Smoothing for N-grams

5. Data Flow Diagram

 testing_file

 output_file

 training_file

Level 0 DFD

 training_file ltree testing_file

 ngram, trans viterbi output_file

Level 1 DFD

 Narray, Ctrans, trans ltree, viterbi

Level 2 DFD

Note1:

· The code can be separated to into parts (subroutines) like – command line parsing, program initialization, error handling & logging, and the main application.

· All the functions/subroutines have been defined in the func.h file. It would be better if,

· Functions/subroutines are defined in separate program files, .cpp file

· In the main program they must be called as subroutines,

· There is lot of complex/obfuscated code which could be restructured in to small functions.

· The programs should be designed so that modules can be called in a pipeline one after another, like Unix programs.

· This kind of program interface design will also help when we plan to run them via a dashboard.

Note2:

· Large number of global variables are defined (not declared) inside the init.h file. These variables are being accessed by functions as and when required.

· The DFDs (derived from code) does only give a vague picture of how the data flows inside the POS Tagger.

· So making a DFD from such code (Reverse Process) brings us to the suggestion that we need to restructure the program codes.

· Restructuring the program codes in line with basic software engineering principles will increase the readability & maintainability of the software.
Postagger

0

Ltree

1

Tagging

3

Train_Lambda

2

Change_trans

3.2

Cal_Narray

3.1

Calculat Transition

Probability

3.3

Find Best Tag

Sequence

3.4

Convert SSF to TnT

Testing Phase

Transition Matrix

Convert TnT to SSF

End

Is sequence

an end?

Build Suffix

Take Word & Tag

Sequence

Start

End

Apply Vitervi

Take Sentence from

test file

Start

Unknown

Word?

Suffix

Smoothing

End of File?

Calculate Emition Probability

3.5

Summary

Generator

n-gram

Smoothing

Suffix

Database

Build Transition Count Matrix

Build

Emission count Matrix

Transition

Count Matrix

Transition,

Emission

Summary

Matrix

Emission

Count Matrix

Emission

Summary

Suffix

Database

Emis. Count

Matrix &

Emis. Summary

Trans. Count

Matrix &

Trans. Summary

Trans.

Summ. Matrix

Sequence of

word-tag

End

Start

Page 1 Of 9

